Hazard Potential in Southern Pakistan: A Study on the Subsidence and Neotectonics of Karachi and Surrounding Areas

Author:

Tirmizi Osman1ORCID,Khan Shuhab D.1,Mirzaee Sara2,Fattahi Heresh3

Affiliation:

1. Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA

2. California Institute of Technology, Pasadena, CA 91125, USA

3. Jet Propulsion Laboratory, Pasadena, CA 91109, USA

Abstract

Coastal communities in deltaic regions worldwide are subject to subsidence through a combination of natural and anthropogenic processes. The city of Karachi in southern Pakistan is situated along the diffuse western boundary of the tectonically active Indian Plate, making it more susceptible to natural subsidence processes from plate motion-related deformational events such as earthquakes and faulting. Karachi has a dense population of over 16 million people, and determining the rate of subsidence and extent of neotectonic activity is crucial for mitigating seismic hazards. Excessive abstraction of groundwater and extensive groundwater use in irrigation are some of the anthropogenic contributions to subsidence in the area. A combination of the lack of historical data and few previous studies of the area make it difficult to determine the rate and extent of deformation in this region. We present an analysis of subsidence and neotectonic activity in Karachi and its surrounding areas using Interferometric Synthetic Aperture Radar (InSAR) timeseries techniques. The InSAR results for satellite LOS velocity change in both ascending and descending Sentinel-1 tracks indicate subsidence in key residential and industrial areas. Further decomposition into two dimensions (east–west and vertical) quantifies subsidence in these areas up to 1.7 cm per year. Furthermore, InSAR data suggest the presence of an active north–east dipping listric normal fault in North Karachi that is confirmed in the shallow subsurface by a 2D seismic line. Subsidence is known to cause the reactivation of faults, which increases the risk of damage to infrastructure.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3