Portfolio Management of Copula-Dependent Assets Based on P(Y < X) Reliability Models: Revisiting Frank Copula and Dagum Distributions

Author:

Rathie Pushpa NarayanORCID,de Sena Monteiro Ozelim Luan CarlosORCID,de Andrade Bernardo BorbaORCID

Abstract

Modern portfolio theory indicates that portfolio optimization can be carried out based on the mean-variance model, where returns and risk are represented as the average and variance of the historical data of the stock’s returns, respectively. Several studies have been carried out to find better risk proxies, as variance was not that accurate. On the other hand, fewer papers are devoted to better model/characterize returns. In the present paper, we explore the use of the reliability measure P(Y<X) to choose between portfolios with returns given by the distributions X and Y. Thus, instead of comparing the expected values of X and Y, we will explore the metric P(Y<X) as a proxy parameter for return. The dependence between such distributions shall be modelled by copulas. At first, we derive some general results which allows us to split the value of P(Y<X) as the sum of independent and dependent parts, in general, for copula-dependent assets. Then, to further develop our mathematical framework, we chose Frank copula to model the dependency between assets. In the process, we derive a new polynomial representation for Frank copulas. To perform a study case, we considered assets whose returns’ distributions follow Dagum distributions or their transformations. We carried out a parametric analysis, indicating the relative effect of the dependency of return distributions over the reliability index P(Y<X). Finally, we illustrate our methodology by performing a comparison between stock returns, which could be used to build portfolios based on the value of the the reliability index P(Y<X).

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3