Polymeric/Dextran Wafer Dressings as Promising Long-Acting Delivery Systems for Curcumin Topical Delivery and Enhancing Wound Healing in Male Wistar Albino Rats

Author:

Al Fatease AdelORCID,Abourehab Mohammed A. S.ORCID,Alqahtani Ali M.ORCID,Chidambaram KumarappanORCID,Qureshi Absar Ahmed,Venkatesan KrishnarajuORCID,Alshahrani Sultan M.ORCID,Abdelkader Hamdy

Abstract

Curcumin is the main active constituent in turmeric, and it is one of the biopolyphenolic compounds. A cumulative body of research supports the use of curcumin in the treatment of wounds, yet poor water solubility and lack of therapeutic dose determination hamper its use for this therapeutic purpose. This work aimed at preparing novel curcumin wafer dressings to provide a favorable environment for wound healing. Hybrid synthetic (PVA, PVP, HPMC, and CMC) and biodegradable (sodium alginate and dextran) polymers were employed to prepare wafer dressings loaded with incremental three doses (2, 10, and 20 mg) of curcumin per a wafer dressing. The solvent casting method was used to prepare the dressings. Dimension, surface pH, mechanical properties, DSC, FTIR, XRD, erosion time, and in vitro release were studied. Skin wound healing assay was studied in Wistar albino rats. Six curcumin-loaded wafers were successfully prepared with good mechanical properties. Curcumin was dispersed in an amorphous/molecular form, as evidenced by thermal (DSC) and spectral (FTIR and XRD) analyses. Prolonged curcumin release (>24 h) was recorded for F6 (10 mg curcumin) and F7 (20 mg curcumin). Wound healing rate constants and time for 50% wound closure (T1/2) were estimated from a semi-log wound diameter versus time curve. A superior healing rate (up to 3-fold faster) was recorded for curcumin-loaded wafer dressings containing 10 mg (F6) with T1/2 of 7 days compared to 20 days for the placebo-treated group. These results warrant using the selected curcumin-loaded wafer dressing for safer and faster wound closure.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3