Regulation of Meat Duck Activeness through Photoperiod Based on Deep Learning

Author:

Duan Enze12,Han Guofeng12,Zhao Shida12,Ma Yiheng12,Lv Yingchun12,Bai Zongchun12

Affiliation:

1. Agricultural Facilities and Equipment Research Institute, Jiangsu Academy of Agriculture Science, Nanjing 210014, China

2. Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China

Abstract

The regulation of duck physiology and behavior through the photoperiod holds significant importance for enhancing poultry farming efficiency. To clarify the impact of the photoperiod on group-raised duck activeness and quantify duck activeness, this study proposes a method that employs a multi-object tracking model to calculate group-raised duck activeness. Then, duck farming experiments were designed with varying photoperiods as gradients to assess this impact. The constructed multi-object tracking model for group-raised ducks was based on YOLOv8. The C2f-Faster-EMA module, which combines C2f-Faster with the EMA attention mechanism, was used to improve the object recognition performance of YOLOv8. Furthermore, an analysis of the tracking performance of Bot-SORT, ByteTrack, and DeepSORT algorithms on small-sized duck targets was conducted. Building upon this foundation, the duck instances in the images were segmented to calculate the distance traveled by individual ducks, while the centroid of the duck mask was used in place of the mask regression box’s center point. The single-frame average displacement of group-raised ducks was utilized as an intuitive indicator of their activeness. Farming experiments were conducted with varying photoperiods (24L:0D, 16L:8D, and 12L:12D), and the constructed model was used to calculate the activeness of group-raised ducks. The results demonstrated that the YOLOv8x-C2f-Faster-EMA model achieved an object recognition accuracy (mAP@50-95) of 97.9%. The improved YOLOv8 + Bot-SORT model achieved a multi-object tracking accuracy of 85.1%. When the photoperiod was set to 12L:12D, duck activeness was slightly lower than that of the commercial farming’s 24L:0D lighting scheme, but duck performance was better. The methods and conclusions presented in this study can provide theoretical support for the welfare assessment of meat duck farming and photoperiod regulation strategies in farming.

Funder

Agriculture Science and Technology Independent Innovation Project of Jiangsu Province

Jiangsu Provincial Excellent Postdoctoral Program

JAAS Fund for International Cooperation

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3