Affiliation:
1. Collecte Localisation Satellites, 11 Rue Hermès, Parc Technologique du Canal, 31520 Ramonville-Saint-Agne, France
2. Centre National d’Études Spatiales, 18 Avenue Edouard Belin, CEDEX 9, 31401 Toulouse, France
Abstract
A new mean sea surface (MSS) was determined by focusing on the accuracy provided by exact-repeat altimetric missions (ERM) and the high spatial coverage of geodetic (or drifting) missions. The goal was to obtain a high-resolution MSS that would provide centimeter-level precision. Particular attention was paid to the homogeneity of the oceanic content of this MSS, and specific processing was also carried out, particularly on the data from the geodetic missions. For instance, CryoSat-2 and SARAL/AltiKa data sampled at high frequencies were enhanced using a dedicated filtering process and corrected from oceanic variability using the results of the objective analysis of sea-level anomalies provided by DUACS multi-missions gridded sea-level anomalies fields (MSLA). Particular attention was also paid to the Arctic area by combining traditional sea-surface height (SSH) with the sea levels estimated within fractures in the ice (leads). The MSS was determined using a local least-squares collocation technique, which provided an estimation of the calibrated error. Furthermore, our technique takes into account altimetric noises, ocean-variability-correlated noises, and along-track biases, which are determined independently for each observation. Moreover, variable cross-covariance models were fitted locally for a more precise determination of the shortest wavelengths, which were shorter than 30 km. The validations performed on this new MSS showed an improvement in the finest topographic structures, with amplitudes exceeding several cm, while also continuing to refine the correction of the oceanic variability. Overall, the analysis of the precision of this new CNES_CLS 2022 MSS revealed an improvement of 40% compared to the previous model, from 2015.
Subject
General Earth and Planetary Sciences
Reference21 articles.
1. An Assessment of State-of-the-Art Mean Sea Surface and Geoid Models of the Arctic Ocean: Implications for Sea Ice Freeboard Retrieval;Skourup;J. Geophys. Res. Oceans,2017
2. Andersen, O.B., Stenseng, L., Piccioni, G., and Knudsen, P. (2016, January 9–13). The DTU15 MSS (mean sea surface) and DTU15LAT (lowest astronomical tide) reference surface. Proceedings of the ESA Living Planet Symposium, Prague, Czech Republic.
3. Arctic sea surface height maps from multi-altimeter combination;Prandi;Earth Syst. Sci. Data,2021
4. Rose, S.K., Andersen, O.B., Passaro, M., Ludwigsen, C.A., and Schwatke, C. (2019). Arctic Ocean Sea Level Record from the Complete Radar Altimetry Era: 1991–2018. Remote Sens., 11.
5. The CNES_CLS11 Global Mean Sea Surface Computed from 16 Years of Satellite Altimeter Data;Schaeffer;Mar. Geodesy,2012
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献