Abstract
Increasing carbon dioxide (CO2) concentrations threaten human production and life. Currently the equipment used for CO2 monitoring is heavy and expensive, without a portable CO2 detector that is inexpensive and resistant to interference. Here we designed a portable CO2 detector based on no-dispersive infrared sensors to measure CO2 concentration. The detector, which has a mass of 1 kg, is powered by a lithium battery with dimensions of 200 mm (length) × 150 mm (width) × 100 mm (height). Considering the fact that field observations are susceptible to humidity, a series of experiments were carried out to reduce the humidity interference on sensor responses at a laboratory. The values of humidity and CO2 variation were used in a regression model analysis to determine a quadratic function with an R2 above 0.94. The detector was compared with a reference analyzer in ambient CO2 measurement during a 7-day field campaign in Hangzhou, China. After humidity correction, the data show better correlation with the reference data, with the R2 0.62–0.97 increasing from 0.62–0.97 compared to before the correction and the value deviation decreasing to less than 3%. Cluster analysis of sensors revealed a reduction in average relative deviation of up to 1.4% as the number of sensors increased.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Zhejiang Province “Lingyan” Research and Development Project
Key Research Program of Zhejiang Province
Natural Science Foundation of Zhejiang Province, China
Shaoxing Science and Technology Plan Project
Key project of Scientific and Technological Research Program of Chongqing Municipal Education Commission
Natural Science Foundation of Chongqing Bureau of science and technology
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献