Abstract
This paper investigates the formation and propagation of defects in the heteroepitaxial growth of single-crystal diamond with a thick film achieving 500 µm on Ir (001)/Al2O3 substrate. The growth of diamond follows the Volmer–Weber mode, i.e., initially shows the islands and subsequently coalesces to closed films. The films’ strain imposed by the substrate gradually relaxed as the film thickness increased. It was found that defects are mainly located at the diamond/Ir interface and are then mainly propagated along the [001] direction from the nucleation region. Etching pits along the [001] direction formed by H2/O2 plasma treatment were used to show defect distribution at the diamond/Ir/Al2O3 interface and in the diamond bulk, which revealed the reduction of etching pit density in diamond thick-film surface. These results show the evident impact of the thickness on the heteroepitaxially grown diamond films, which is of importance for various device applications.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Key R&D Program of Shaanxi Province of China
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献