Abstract
Mapping function (MF) converts the line-of-sight slant total electron content (STEC) into the vertical total electron content (VTEC), and vice versa. In an MF, an essential parameter is the ionospheric effective height. However, the inhomogeneous ionosphere makes this height vary spatially and temporally, meaning it is not a global constant. In the paper, we review several mapping functions and propose a mapping function that utilizes the ionospheric varying height (IVH). We investigate impacts of the IVH on mapping errors and on the ionospheric modeling, as well as on the satellite and receiver differential code biases (DCBs). Our analysis results indicate that the mapping errors using IVH are smaller than those from the fixed height of 450 km. The integral height achieves smaller mapping errors than using a fixed height of 450 km, an improvement of about 8% when compared with the fixed height of 450 km. And 35% smaller mapping errors were found using HmF2 at the lower latitude. Also, the effects of IVH on the satellite DCBs are about 0.1 ns, and larger impacts on the receiver DCBs at 1.0 ns.
Subject
General Earth and Planetary Sciences
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献