Top-Down Proteomics of Medicinal Cannabis

Author:

Vincent ,Binos ,Rochfort ,Spangenberg

Abstract

The revised legislation on medicinal cannabis has triggered a surge of research studies in this space. Yet, cannabis proteomics is lagging. In a previous study, we optimised the protein extraction of mature buds for bottom-up proteomics. In this follow-up study, we developed a top-down mass spectrometry (MS) proteomics strategy to identify intact denatured protein from cannabis apical buds. After testing different source-induced dissociation (SID), collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), and electron transfer dissociation (ETD) parameters on infused known protein standards, we devised three LC-MS/MS methods for top-down sequencing of cannabis proteins. Different MS/MS modes produced distinct spectra, albeit greatly overlapping between SID, CID, and HCD. The number of fragments increased with the energy applied; however, this did not necessarily translate into greater sequence coverage. Some precursors were more amenable to fragmentation than others. Sequence coverage decreased as the mass of the protein increased. Combining all MS/MS data maximised amino acid (AA) sequence coverage, achieving 73% for myoglobin. In this experiment, most cannabis proteins were smaller than 30 kD. A total of 46 cannabis proteins were identified with 136 proteoforms bearing different post-translational modifications (PTMs), including the excision of N-terminal M, the N-terminal acetylation, methylation, and acetylation of K resides, and phosphorylation. Most identified proteins are involved in photosynthesis, translation, and ATP production. Only one protein belongs to the phytocannabinoid biosynthesis, olivetolic acid cyclase.

Publisher

MDPI AG

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry,Structural Biology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3