Enhanced Electrophoretic Depletion of Sodium Dodecyl Sulfate with Methanol for Membrane Proteome Analysis by Mass Spectrometry

Author:

Said Hammam H.1,Doucette Alan A.1

Affiliation:

1. Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada

Abstract

Membrane proteins are underrepresented during proteome characterizations, primarily owing to their lower solubility. Sodium dodecyl sulfate (SDS) is favored to enhance protein solubility but interferes with downstream analysis by mass spectrometry. Here, we present an improved workflow for SDS depletion using transmembrane electrophoresis (TME) while retaining a higher recovery of membrane proteins. Though higher levels of organic solvent lower proteome solubility, we found that the inclusion of 40% methanol provided optimal solubility of membrane proteins, with 86% recovery relative to extraction with SDS. Incorporating 40% methanol during the electrophoretic depletion of SDS by TME also maximized membrane protein recovery. We further report that methanol accelerates the rate of detergent removal, allowing TME to deplete SDS below 100 ppm in under 3 min. This is attributed to a three-fold elevation in the critical micelle concentration (CMC) of SDS in the presence of methanol, combined with a reduction in the SDS to protein binding ratio in methanol (0.3 g SDS/g protein). MS analysis of membrane proteins isolated from the methanol-assisted workflow revealed enhanced proteome detection, particularly for proteins whose pI contributed a minimal net charge and therefore possessed reduced solubility in a purely aqueous solvent. This protocol presents a robust approach for the preparation of membrane proteins by maximizing their solubility in MS-compatible solvents, offering a tool to advance membrane proteome characterization.

Funder

National Research Council of Canada

Publisher

MDPI AG

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3