Digital Twinning of a Magnetic Forging Holder to Enhance Productivity for Industry 4.0 and Metaverse

Author:

Khalaj Omid1ORCID,Jamshidi Mohammad (Behdad)2ORCID,Hassas Parsa13,Mašek Bohuslav1,Štadler Ctibor1,Svoboda Jiří4

Affiliation:

1. Faculty of Electrical Engineering, University of West Bohemia, Univerzitní 22, 306 14 Pilsen, Czech Republic

2. The International Association of Engineers, Hong Kong, China

3. Faculty of Applied Science, University of West Bohemia, Technická 8, 301 00 Pilsen, Czech Republic

4. Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno, Czech Republic

Abstract

The concept of digital twinning is essential for smart manufacturing and cyber-physical systems to be connected to the Metaverse. These digital representations of physical objects can be used for real-time analysis, simulations, and predictive maintenance. A combination of smart manufacturing, Industry 4.0, and the Metaverse can lead to sustainable productivity in industries. This paper presents a practical approach to implementing digital twins of a magnetic forging holder that was designed and manufactured in this project. Thus, this paper makes two important contributions: the first contribution is the manufacturing of the holder, and the second significant contribution is the creation of its digital twin. The holder benefits from a special design and implementation, making it a user-friendly and powerful tool in materials research. More specifically, it can be employed for the thermomechanical influencing of the structure and, hence, the final properties of the materials under development. In addition, this mechanism allows us to produce a new type of creep-resistant composite material based on Fe, Al, and Y. The magnetic forging holder consolidates the powder material to form a solid state after mechanical alloying. We produce bars from the powder components using a suitable forging process in which extreme grain coarsening occurs after the final heat treatment. This is one of the conditions for achieving very high resistance to creep at high temperatures.

Funder

Czech Science Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3