Automatic Optimization of Multi-Well Multi-Stage Fracturing Treatments Combining Geomechanical Simulation, Reservoir Simulation and Intelligent Algorithm

Author:

Wang Bo1,Fang Yan2,Li Lizhe3,Liu Zhe4

Affiliation:

1. Petroleum College, China University of Petroleum-Beijing at Karamay, Karamay 834000, China

2. PetroChina Changqing Oilfield Company No. 10 Oil Production Plant, Xi’an 710201, China

3. National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China

4. Petroleum College, The University of Tulsa, Tulsa, OK 74104, USA

Abstract

Shale reserves have become an ever-increasing component of the world’s energy map. The optimal design of multi-well multi-stage fracturing (MMF) treatments is essential to the economic development of such resources. However, optimizing MMF treatments is a complex process. It requires geomechanical simulation, reservoir simulation, and automatic optimization. In this work, an integrated workflow is proposed to optimize MMF treatments in an unconventional reservoir, and the net present value (NPV) of reserves was treated as the objective function. The forward model consists of two submodels: a hydraulic fracturing model and a reservoir simulation model. The stochastic simplex approximation gradient (StoSAG) is used with the steepest ascent algorithm to maximize the NPV function. The computational results show that optimizing the fracture design can achieve a 20% higher NPV than that obtained with the field reference case. The drainage area of the optimal design is larger than that of the initial design. The maximum gas production rate increases from 23.75 MMSCF/day to 34.43 MMSCF/day and the maximum oil production rate increases from 497 STB/day to 692 STB/day. Therefore, new optimization paths can accelerate fracture design and help increase well production. This paper innovatively proposes a coupled workflow that can reduce the waste of manpower and improve the optimization results.

Funder

Research Foundation of China University of Petroleum-Beijing at Karamay

National Natural Science Foundation of China

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Karamay Innovative Environment Construction Plan (Innovative talents) project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3