Research on a Visual Comfort Model Based on Individual Preference in China through Machine Learning Algorithm

Author:

Ma Guofeng,Pan Xuhui

Abstract

Recently, decreasing energy consumption under the premise of building comfort has become a popular topic, especially visual comfort. Existing research on visual comfort lacks a standard of how to select indicators. Moreover, studies on individual visual preference considering the interaction between internal and external environment are few. In this paper, we ranked common visual indicators by the cloud model combined with the failure mode and effect analysis (FMEA) and hierarchical technique for order of preference by similarity to ideal solution (TOPSIS). Unsatisfied vertical illuminance, daylight glare index, luminance ratio, and shadow position are the top four indicators. Based on these indicators, we also built the individual visual comfort model through five categories of personalized data obtained from the experiment, which was trained by four machine learning algorithms. The results show that random forest has the best prediction performance and support vector machine is second. Gaussian mixed model and classification tree have the worst performance of stability and accuracy. In addition, this study also programmed a BIM plug-in integrating environmental data and personal preference data to predict appropriate vertical illuminance for a specific occupant. Thus, managers can adjust the intensity of artificial light in the office by increasing or decreasing the height of table lamps, saving energy and improving occupant comfort. This novel model will serve as a paradigm for selecting visual indicators and make indoor space be tailored to meet individual visual preferences.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference69 articles.

1. Robust stochastic control model for energy and comfort management of buildings;Shaikh;Aust. J. Basic Appl. Sci.,2013

2. Lighting Control Systems: Factors Affecting Energy Savings’ Evaluation

3. China Building Energy Consumption Annual Report 2020;J. BEE,2020

4. Building energy management through a distributed fuzzy inference system;Pervez;Int. J. Eng. Technol.,2013

5. Inferring personalized visual satisfaction profiles in daylit offices from comparative preferences using a Bayesian approach

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3