A Comparison Analysis of Causative Impact of PM2.5 on Acute Exacerbation of Chronic Obstructive Pulmonary Disease (COPD) in Two Typical Cities in China

Author:

Xia XiaolinORCID,Yao LingORCID,Lu Jiaying,Liu YangxiaoyueORCID,Jing WenlongORCID,Li Yong

Abstract

Chronic obstructive pulmonary disease (COPD) is a major and increasingly prevalent respiratory health problem worldwide and the fine particulate matter (PM2.5) is now becoming a rising health threat to it. This study aims to conduct a comparison analysis of health effect on acute exacerbation of COPD (AECOPD) associated with PM2.5 exposure in two typical cities (Beijing and Shenzhen) with different levels of PM2.5 pollution. Both correlational relationship and causal connection between PM2.5 exposure and AECOPD are investigated by adopting a time series analysis based on the generalized additive model (GAM) and convergent cross mapping (CCM). The results from GAM indicate that a 10 μg/m3 increase in PM2.5 concentration is associated with 2.43% (95% CI, 0.50–4.39%) increase in AECOPD on Lag0-2 in Beijing, compared with 6.65% (95% CI, 2.60–10.87%) on Lag0-14 in Shenzhen. The causality detection with CCM reveals similar significant causative impact of PM2.5 exposure on AECOPD in both two study areas. Findings from two methods agree that PM2.5 has non-negligible health effect on AECOPD in both two study areas, implying that air pollution can cause adverse consequences at much lower levels than common cognition. Our study highlights the adverse health effect of PM2.5 on people with COPD after exposure to different levels of PM2.5 and emphasizes that adverse effect in area with relative low pollution level cannot be overlooked. Governments in both high-pollution and low-pollution cities should attach importance to the adverse effects of PM2.5 on humans and take corresponding measures to control and reduce the related losses.

Funder

National Natural Science Foundation of China

Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3