Analysis of Aerosol Optical Depth from Sun Photometer at Shouxian, China

Author:

Xun Lina,Lu Hui,Qian Congcong,Zhang YongORCID,Lyu Shanshan,Li Xin

Abstract

We use two cloud screening methods—the clustering method and the multiplet method—to process the measurements of a sun photometer from March 2020 to April 2021 in Shouxian. The aerosol optical depth (AOD) and Angström parameters α and β are retrieved; variation characteristics and single scattering albedo are studied. The results show that: (1) The fitting coefficient of AOD retrieved by the two methods is 0.921, and the changing trend is consistent. The clustering method has fewer effective data points and days, reducing the overall average of AOD by 0.0542 (500 nm). (2) Diurnal variation of AOD can be divided into flat type, convex type, and concave type. Concave type and convex type occurred the most frequently, whereas flat type the least. (3) During observation, the overall average of AOD is 0.48, which is relatively high. Among them, AOD had a winter maximum (0.70), autumn and spring next (0.54 and 0.40), and a summer minimum (0.26). The variation trend of AOD and β is highly consistent, and the monthly mean of α is between 0.69 and 1.61, concerning mainly continental and urban aerosols. (4) Compared with others, the single scattering albedo in Shouxian is higher, reflecting strong scattering and weak aerosol absorption.

Funder

National Key R&D Plan of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3