WeatherEye-Proposal of an Algorithm Able to Classify Weather Conditions from Traffic Camera Images

Author:

Dahmane KhouloudORCID,Duthon PierreORCID,Bernardin FrédéricORCID,Colomb MichèleORCID,Chausse FrédéricORCID,Blanc ChristopheORCID

Abstract

In road environments, real-time knowledge of local weather conditions is an essential prerequisite for addressing the twin challenges of enhancing road safety and avoiding congestions. Currently, the main means of quantifying weather conditions along a road network requires the installation of meteorological stations. Such stations are costly and must be maintained; however, large numbers of cameras are already installed on the roadside. A new artificial intelligence method that uses road traffic cameras and a convolution neural network to detect weather conditions has, therefore, been proposed. It addresses a clearly defined set of constraints relating to the ability to operate in real-time and to classify the full spectrum of meteorological conditions and order them according to their intensity. The method can differentiate between five weather conditions such as normal (no precipitation), heavy rain, light rain, heavy fog and light fog. The deep-learning method’s training and testing phases were conducted using a new database called the Cerema-AWH (Adverse Weather Highway) database. After several optimisation steps, the proposed method obtained an accuracy of 0.99 for classification.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3