Regional and Local Impacts of the ENSO and IOD Events of 2015 and 2016 on the Indian Summer Monsoon—A Bhutan Case Study

Author:

Power KatherineORCID,Axelsson JosefineORCID,Wangdi NorbuORCID,Zhang QiongORCID

Abstract

The Indian Summer Monsoon (ISM) plays a vital role in the livelihoods and economy of those living on the Indian subcontinent, including the small, mountainous country of Bhutan. The ISM fluctuates over varying temporal scales and its variability is related to many internal and external factors including the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). In 2015, a Super El Niño occurred in the tropical Pacific alongside a positive IOD in the Indian Ocean and was followed in 2016 by a simultaneous La Niña and negative IOD. These events had worldwide repercussions. However, it is unclear how the ISM was affected during this time, both at a regional scale over the whole ISM area and at a local scale over Bhutan. First, an evaluation of data products comparing ERA5 reanalysis, TRMM and GPM satellite, and GPCC precipitation products against weather station measurements from Bhutan, indicated that ERA5 reanalysis was suitable to investigate ISM change in these two years. The reanalysis datasets showed that there was disruption to the ISM during this period, with a late onset of the monsoon in 2015, a shifted monsoon flow in July 2015 and in August 2016, and a late withdrawal in 2016. However, this resulted in neither a monsoon surplus nor a deficit across both years but instead large spatial-temporal variability. It is possible to attribute some of the regional scale changes to the ENSO and IOD events, but the expected impact of a simultaneous ENSO and IOD events are not recognizable. It is likely that 2015/16 monsoon disruption was driven by a combination of factors alongside ENSO and the IOD, including varying boundary conditions, the Pacific Decadal Oscillation, the Atlantic Multi-decadal Oscillation, and more. At a local scale, the intricate topography and orographic processes ongoing within Bhutan further amplified or dampened the already altered ISM.

Funder

Vetenskapsrådet

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3