Geochemical Characterization and Heavy Metal Sources in PM10 in Arequipa, Peru

Author:

Li Jianghanyang,Michalski Greg,Olson Elizabeth JoyORCID,Welp Lisa R.ORCID,Larrea Valdivia Adriana E.ORCID,Larico Juan Reyes,Zapata Francisco AlejoORCID,Paredes Lino Morales

Abstract

Particulate matter smaller than 10 μm (PM10) is an important air pollutant that adversely affects human health by increasing the risk of respiratory and cardiovascular diseases. Recent studies reported multiple extreme PM10 levels at high altitude Peruvian cities, which resulted from a combination of high emissions and limited atmospheric circulation at high altitude. However, the emission sources of the PM10 still remain unclear. In this study, we collected PM10 samples from four sites (one industrial site, one urban site, and two rural sites) at the city of Arequipa, Peru, during the period of February 2018 to December 2018. To identify the origins of PM10 at each site and the spatial distribution of PM10 emission sources, we analyzed major and trace element concentrations of the PM10. Of the observed daily PM10 concentrations at Arequipa during our sampling period, 91% exceeded the World Health Organization (WHO) 24-h mean PM10 guideline value, suggesting the elevated PM10 strongly affected the air quality at Arequipa. The concentrations of major elements, Na, K, Mg, Ca, Fe, and Al, were high and showed little variation, suggesting that mineral dust was a major component of the PM10 at all the sites. Some trace elements, such as Mn and Mo, originated from the mineral dust, while other trace elements, including Pb, Sr, Cu, Ba, Ni, As and V, were from additional anthropogenic sources. The industrial activities at Rio Seco, the industrial site, contributed to significant Pb, Cu, and possibly Sr emissions. At two rural sites, Tingo Grande and Yarabamba, strong Cu emissions were observed, which were likely associated with mining activities. Ni, V, and As were attributed to fossil fuel combustion emissions, which were strongest at the Avenida Independencia urban site. Elevated Ba and Cu concentrations were also observed at the urban site, which were likely caused by heavy traffic in the city and vehicle brake wear emissions.

Funder

Arequipa Nexus Institute for Food, Energy, Water, and the Environment

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3