Effect of Extreme Temperatures and Driving Conditions on Gaseous Pollutants of a Euro 6d-Temp Gasoline Vehicle

Author:

Giechaskiel Barouch,Valverde VictorORCID,Kontses AnastasiosORCID,Suarez-Bertoa RicardoORCID,Selleri TommasoORCID,Melas AnastasiosORCID,Otura Marcos,Ferrarese Christian,Martini Giorgio,Balazs Andreas,Andersson Jon,Samaras ZisisORCID,Dilara Panagiota

Abstract

Gaseous emissions of modern Euro 6d vehicles, when tested within real driving emissions (RDE) boundaries, are, in most cases, at low levels. There are concerns, though, about their emission performance when tested at or above the boundaries of ambient and driving conditions requirements of RDE regulations. In this study, a Euro 6d-Temp gasoline direct injection (GDI) vehicle with three-way catalyst and gasoline particulate filter was tested on the road and in a laboratory at temperatures ranging between −30 °C and 50 °C, with cycles simulating urban congested traffic, uphill driving while towing a trailer at 85% of the vehicle’s maximum payload, and dynamic driving. The vehicle respected the Euro 6 emission limits, even though they were not applicable to the specific cycles, which were outside of the RDE environmental and trip boundary conditions. Most of the emissions were produced during cold starts and at low ambient temperatures. Heavy traffic, dynamic driving, and high payload were found to increase emissions depending on the pollutant. Even though this car was one of the lowest emitting cars found in the literature, the proposed future Euro 7 limits will require a further decrease in cold start emissions in order to ensure low emission levels under most ambient and driving conditions, particularly in urban environments. Nevertheless, motorway emissions will also have to be controlled well.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3