Particle Size Analysis of African Dust Haze over the Last 20 Years: A Focus on the Extreme Event of June 2020

Author:

Euphrasie-Clotilde Lovely,Plocoste ThomasORCID,Brute France-Nor

Abstract

Over the last decades, the impact of mineral dust from African deserts on human health and climate has been of great interest to the scientific community. In this paper, the climatological analysis of dusty events of the past 20 years in the Caribbean area has been performed using a particulate approach. The focus is made on June 2020 extreme event dubbed “Godzilla”. To carry out this study, different types of data were used (ground-based, satellites, model, and soundings) on several sites in the Caribbean islands. First, the magnitude of June 2020 event was clearly highlighted using satellite imagery. During the peak of this event, the value of particulate matter with an aerodynamic diameter of less than 10 μμm (PM10) reached a value 9 times greater than the threshold recommended by the World Health Organization in one day. Thereafter, the PM10, the aerosol optical depth, and the volume particle size distribution analyses exhibited their maximum values for June 2020. We also highlighted the exceptional characteristics of the Saharan air layer in terms of thickness and wind speed for this period. Finally, our results showed that the more the proportion of particulate matter with an aerodynamic diameter of less than 2.5 μμm (PM2.5) in PM10 increases, the more the influence of sea salt aerosols is significant.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3