Climate Variability, Dengue Vector Abundance and Dengue Fever Cases in Dhaka, Bangladesh: A Time-Series Study

Author:

Islam Sabrina,Haque C. Emdad,Hossain Shakhawat,Hanesiak John

Abstract

Numerous studies on climate change and variability have revealed that these phenomena have noticeable influence on the epidemiology of dengue fever, and such relationships are complex due to the role of the vector—the Aedes mosquitoes. By undertaking a step-by-step approach, the present study examined the effects of climatic factors on vector abundance and subsequent effects on dengue cases of Dhaka city, Bangladesh. Here, we first analyzed the time-series of Stegomyia indices for Aedes mosquitoes in relation to temperature, rainfall and relative humidity for 2002–2013, and then in relation to reported dengue cases in Dhaka. These data were analyzed at three sequential stages using the generalized linear model (GLM) and generalized additive model (GAM). Results revealed strong evidence that an increase in Aedes abundance is associated with the rise in temperature, relative humidity, and rainfall during the monsoon months, that turns into subsequent increases in dengue incidence. Further we found that (i) the mean rainfall and the lag mean rainfall were significantly related to Container Index, and (ii) the Breteau Index was significantly related to the mean relative humidity and mean rainfall. The relationships of dengue cases with Stegomyia indices and with the mean relative humidity, and the lag mean rainfall were highly significant. In examining longitudinal (2001–2013) data, we found significant evidence of time lag between mean rainfall and dengue cases.

Funder

International Development Research Centre

Social Sciences and Humanities Research Council of Canada

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference70 articles.

1. Dengue

2. The global pandemic of dengue/dengue haemorrhagic fever: Current status and prospects for the future;Gubler;Ann. Acad. Med. Singap.,1998

3. Les insectes ne connaissent pas nos frontières

4. Dengue and Severe Dengue https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

5. Climate change and vector-borne diseases: A regional analysis;Githeko;Bull. World Health Organ.,2000

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3