Daily River Water Temperature Prediction: A Comparison between Neural Network and Stochastic Techniques

Author:

Graf RenataORCID,Aghelpour PouyaORCID

Abstract

The temperature of river water (TRW) is an important factor in river ecosystem predictions. This study aims to compare two different types of numerical model for predicting daily TRW in the Warta River basin in Poland. The implemented models were of the stochastic type—Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA) and Autoregressive Integrated Moving Average (ARIMA)—and the artificial intelligence (AI) type—Adaptive Neuro Fuzzy Inference System (ANFIS), Radial Basis Function (RBF) and Group Method of Data Handling (GMDH). The ANFIS and RBF models had the most fitted outputs and the AR, ARMA and ARIMA patterns were the most accurate ones. The results showed that both of the model types can significantly present suitable predictions. The stochastic models have somewhat less error with respect to both the highest and lowest TRW deciles than the AIs and were found to be better for prediction studies, with the GMDH complex model in some cases reaching Root Mean Square Error (RMSE) = 0.619 °C and Nash-Sutcliff coefficient (NS) = 0.992, while the AR(2) simple linear model with just two inputs was partially able to achieve better results (RMSE = 0.606 °C and NS = 0.994). Due to these promising outcomes, it is suggested that this work be extended to other catchment areas to extend and generalize the results.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3