Hydrophobic and Luminescent Polydimethylsiloxane PDMS-Y2O3:Eu3+ Coating for Power Enhancement and UV Protection of Si Solar Cells

Author:

Goponenko Darya1ORCID,Zhumanova Kamila1ORCID,Shamarova Sabina1ORCID,Yelzhanova Zhuldyz2,Ng Annie2ORCID,Atabaev Timur Sh.1ORCID

Affiliation:

1. Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan

2. Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan

Abstract

Solar cells have been developed as a highly efficient source of alternative energy, collecting photons from sunlight and turning them into electricity. On the other hand, ultraviolet (UV) radiation has a substantial impact on solar cells by damaging their active layers and, as a result, lowering their efficiency. Potential solutions include the blocking of UV light (which can reduce the power output of solar cells) or converting UV photons into visible light using down-conversion optical materials. In this work, we propose a novel hydrophobic coating based on a polydimethylsiloxane (PDMS) layer with embedded red emitting Y2O3:Eu3+ (quantum yield = 78.3%) particles for UV radiation screening and conversion purposes. The favorable features of the PDMS-Y2O3:Eu3+ coating were examined using commercially available polycrystalline silicon solar cells, resulting in a notable increase in the power conversion efficiency (PCE) by ~9.23%. The chemical and UV stability of the developed coatings were assessed by exposing them to various chemical conditions and UV irradiation. It was found that the developed coating can endure tough environmental conditions, making it potentially useful as a UV-protective, water-repellent, and efficiency-enhancing coating for solar cells.

Funder

Nazarbayev University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3