Simulation and Experimental Research on a Beam Homogenization System of a Semiconductor Laser

Author:

Zheng Haijing,Sun Huayan,Zhang Huaili,Li Yingchun,Guo Huichao,Zhang Laixian,Li Rong,Yin Qiang

Abstract

Aiming at the application of laser active imaging detection technology, this paper studied the beam homogenization system of a semiconductor laser based on a homogenizing pipe. Firstly, the principle of the homogenizing pipe was introduced. Secondly, the homogenization effect, which was influenced by several geometric parameters (aperture size, length, and taper) of the homogenizing pipe using the optical design software, was simulated for the fiber-coupled semiconductor laser. Finally, according to the simulated results, a laser illumination system composed of a fiber-coupled semiconductor laser, a homogenizing pipe, and an aspheric lens was designed, which can obtain a rectangular uniform light spot in a long distance. The effectiveness of the illumination system was verified by simulation and experiment, respectively. Simulation results suggested that the uniformity of the spot at a distance of 20 m was 85.6%, while divergence angle was 10 mrad. The uniformity of the spot at a distance of 120 m was 91.5%, while divergence angle was 10 mrad. Experimental results showed that the uniformity of the spot at a distance of 20 m was 87.7%, while divergence angle was 13 mrad. The uniformity of the spot at a distance of 120 m was 93.3%, while divergence angle was 15 mrad. The laser illumination system designed in this paper was simple and easy to assemble, and has strong practicability. The results in this paper have certain reference value and guiding significance for the homogenization design of semiconductor lasers.

Funder

National Key Research and Development Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3