Growth Mechanisms of ZnO Micro-Nanomorphologies and Their Role in Enhancing Gas Sensing Properties

Author:

Fioravanti AmbraORCID,Marani Pietro,Morandi SaraORCID,Lettieri StefanoORCID,Mazzocchi MauroORCID,Sacerdoti Michele,Carotta Maria Cristina

Abstract

Zinc oxide (ZnO) is one of the main functional materials used to realize chemiresistive gas sensors. In addition, ZnO can be grown through many different methods obtaining the widest family of unique morphologies. However, the relationship between the ZnO morphologies and their gas sensing properties needs more detailed investigations, also with the aim to improve the sensor performances. In this work, seven nanoforms (such as leaves, bisphenoids, flowers, needles, etc.) were prepared through simple wet chemical synthesis. Morphological and structural characterizations were performed to figure out their growth mechanisms. Then, the obtained powders were deposited through screen-printing technique to realize thick film gas sensors. The gas sensing behavior was tested toward some traditional target gases and some volatile organic compounds (acetone, acetaldehyde, etc.) and compared with ZnO morphologies. Results showed a direct correlation between the sensors responses and the powders features (morphology and size), which depend on the specific synthesis process. The sensors can be divided in two behavioral classes, following the two main morphology kinds: aggregates of nanocrystals (leaves and bisphenoids), exhibiting best performances versus all tested gases and monocrystal based (stars, needle, long needles, flowers, and prisms).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3