Using Augmented and Virtual Reality (AR/VR) to Support Safe Navigation on Inland and Coastal Water Zones

Author:

Templin TomaszORCID,Popielarczyk DariuszORCID,Gryszko Marcin

Abstract

The aim of this research is to propose a new solution to assist sailors in safe navigation on inland shallow waters by using Augmented and Virtual Reality. Despite continuous progress in the methodology of displaying bathymetric data and 3D models of the bottoms, there is still a lack of solutions promoting these data and their widespread use. Most existing products present navigation content on 2D/3D maps onscreen. Augmented Reality (AR) technology revolutionises the way digital content is displayed. This paper presents the solution for the use of AR on inland and coastal waterways to increase the safety of sailing and other activities on the water (diving, fishing, etc.). The real-time capability of AR in the proposed mobile application also allows other users to be observed on the water in limited visibility and even at night. The architecture and the prototype Mobile Augmented Reality (MAR) applications are presented. The required AR, including the preparation methodology supported by the Virtual Reality Geographic Information System (VRGIS), is also shown. The prototype’s performance has been validated in water navigation, specifically for exemplary lakes of Warmia and Mazury in Poland. The performed tests showed the great usefulness of AR in the field of content presentation during the navigation process.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reviving Narratives;Advances in Hospitality, Tourism, and the Services Industry;2024-06-07

2. Epifaunal Communities in Floating Buoys on Gran Canaria (Canary Islands, NE Atlantic Ocean);Thalassas: An International Journal of Marine Sciences;2024-04-29

3. Augmented Reality based WayFinder System in Libraries;2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS);2023-12-11

4. A 3D-Panoramic fusion flood enhanced visualization method for VR;Environmental Modelling & Software;2023-11

5. Usefulness of Plane-Based Augmented Geovisualization—Case of “The Crown of Polish Mountains 3D”;ISPRS International Journal of Geo-Information;2023-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3