Mapping Canopy Cover in African Dry Forests from the Combined Use of Sentinel-1 and Sentinel-2 Data: Application to Tanzania for the Year 2018

Author:

Verhegghen AstridORCID,Kuzelova Klara,Syrris VasileiosORCID,Eva Hugh,Achard Frédéric

Abstract

High-resolution Earth observation data is routinely used to monitor tropical forests. However, the seasonality and openness of the canopy of dry tropical forests remains a challenge for optical sensors. In this study, we demonstrate the potential of combining Sentinel-1 (S1) SAR and Sentinel-2 (S2) optical sensors in order to map the tree cover in East Africa. The overall methodology consists of: (i) the generation of S1 and S2 layers, (ii) the collection of an expert-based training/validation dataset and (iii) the classification of the satellite data. Three different classification workflows, together with different approaches to incorporating the spatial information to train the classifiers, are explored. Two types of maps were derived from these mapping approaches over Tanzania: (i) binary tree cover–no tree cover (TC/NTC) maps, and (ii) maps of the canopy cover classes. The overall accuracy of the maps is >95% for the TC/NTC maps and >85% for the forest types maps. Considering the neighboring pixels for training the classification improved the mapping of the areas that are covered by 1–10% tree cover. The study relied on open data and publicly available tools and can be integrated into national monitoring systems.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference68 articles.

1. The Importance of High–Quality Data for REDD+ Monitoring and Reporting

2. Voluntary Guidelines on National Forest Monitoring;Morales-Hidalgo,2017

3. An assessment of data sources, data quality and changes in national forest monitoring capacities in the Global Forest Resources Assessment 2005–2020

4. UNFCCC National Forest Monitoring Systemhttps://redd.unfccc.int/fact-sheets/national-forest-monitoring-system.html

5. High-Resolution Global Maps of 21st-Century Forest Cover Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3