Vibrations Affecting Stability and Edge Control of Snowboards

Author:

Fuss Franz Konstantin

Abstract

Background: During a carving turn, vibrations are induced at the heel of the snowboard through edge friction when the heel slips sideways and subsequently travel through and along the board to the shovel, which vibrates and affects the edge control. The purpose of this study was to find a method for assessing the edge grip with a laser vibrometer. Method: Two boards, loaded and tilted at four different angles, were placed on a soft surface, with a shaker connected to the heel at the hindmost edge point. The shovel and particularly the frontmost edge point were scanned with a Polytec laser vibrometer. The frequency response functions of coherence, average shovel displacement, and displacement of the foremost edge point were recorded, and the latter was integrated for obtaining an edge mobility measure (EMM) to quantify the edge control. Results: Of the two boards compared, the shovel of board A was stiffer in the 1st and in the 3rd torsional mode, and the one of board B was stiffer in bending modes. The 2nd torsional mode was responsible for large edge vibrations and therefore for a diminished edge control. Shovel B had a smaller EMM at greater tilt angles, that is, less amplitude of the vibrations at the frontmost edge point, and therefore a better edge control. Shovel A, however, had a smaller EMM at smaller tilt angles. Conclusion: The method developed in this study provides a reliable test for assessment of edge control of a snowboard under standardized test conditions.

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Whole-body vibration exposure during snowboard with lower limb amputations;2024 IEEE International Workshop on Sport, Technology and Research (STAR);2024-07-08

2. MECHANICS OF SKI SLIDING ON SNOW: CURRENT STATUS AND PROSPECTS;Journal of Applied Mechanics and Technical Physics;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3