Abstract
Background: During a carving turn, vibrations are induced at the heel of the snowboard through edge friction when the heel slips sideways and subsequently travel through and along the board to the shovel, which vibrates and affects the edge control. The purpose of this study was to find a method for assessing the edge grip with a laser vibrometer. Method: Two boards, loaded and tilted at four different angles, were placed on a soft surface, with a shaker connected to the heel at the hindmost edge point. The shovel and particularly the frontmost edge point were scanned with a Polytec laser vibrometer. The frequency response functions of coherence, average shovel displacement, and displacement of the foremost edge point were recorded, and the latter was integrated for obtaining an edge mobility measure (EMM) to quantify the edge control. Results: Of the two boards compared, the shovel of board A was stiffer in the 1st and in the 3rd torsional mode, and the one of board B was stiffer in bending modes. The 2nd torsional mode was responsible for large edge vibrations and therefore for a diminished edge control. Shovel B had a smaller EMM at greater tilt angles, that is, less amplitude of the vibrations at the frontmost edge point, and therefore a better edge control. Shovel A, however, had a smaller EMM at smaller tilt angles. Conclusion: The method developed in this study provides a reliable test for assessment of edge control of a snowboard under standardized test conditions.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Whole-body vibration exposure during snowboard with lower limb amputations;2024 IEEE International Workshop on Sport, Technology and Research (STAR);2024-07-08
2. MECHANICS OF SKI SLIDING ON SNOW: CURRENT STATUS AND PROSPECTS;Journal of Applied Mechanics and Technical Physics;2023-08