Distributed Optimization of Joint Seaport-All-Electric-Ships System under Polymorphic Network

Author:

Xia WenjiaORCID,Shan Qihe,Xiao Geyang,Tu Yonggang,Liang Yuan

Abstract

As a result of the trend towards auto intelligence and greening of vehicles and with the concept of polymorphic network being put forward, the power transmission mode between seaports and all-electric ships (AESs) is likely to be converted to “peer-to-peer” transmission. According to practical shore power systems and carbon trade mechanisms, an advanced peer-to-peer power dispatching model-joint seaport-AESs microgrid(MG) system has been proposed in the paper. The joint seaport–AES system model is proposed to minimize the total operational cost of power production and marketing, including distributed generation (DG) cost, electricity trading cost, and carbon emissions, and the boundary conditions are given as well. A parameter projection distributed optimization (PPDO) algorithm is utilized to solve the distributed optimization power operation planning of the proposed joint seaport–AES MG system under a polymorphic network and to guarantee the precision of power dispatching, which compensates for the insufficiency of the computing power. Finally, a case study of a five-node polymorphic joint seaport-AESs system is conducted. The feasibility of the parameter projection approach and the peer-to-peer power dispatching model are verified via the convergence of all the agents within the constraint sets.

Funder

National Key R&D Program of China

Key Research Project of Zhejiang Lab

National Natural Science Foundation of China

Liaoning Revitalization Talents Program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3