Exploring Artificial Neural Networks Efficiency in Tiny Wearable Devices for Human Activity Recognition

Author:

Lattanzi EmanueleORCID,Donati Matteo,Freschi ValerioORCID

Abstract

The increasing diffusion of tiny wearable devices and, at the same time, the advent of machine learning techniques that can perform sophisticated inference, represent a valuable opportunity for the development of pervasive computing applications. Moreover, pushing inference on edge devices can in principle improve application responsiveness, reduce energy consumption and mitigate privacy and security issues. However, devices with small size and low-power consumption and factor form, like those dedicated to wearable platforms, pose strict computational, memory, and energy requirements which result in challenging issues to be addressed by designers. The main purpose of this study is to empirically explore this trade-off through the characterization of memory usage, energy consumption, and execution time needed by different types of neural networks (namely multilayer and convolutional neural networks) trained for human activity recognition on board of a typical low-power wearable device.Through extensive experimental results, obtained on a public human activity recognition dataset, we derive Pareto curves that demonstrate the possibility of achieving a 4× reduction in memory usage and a 36× reduction in energy consumption, at fixed accuracy levels, for a multilayer Perceptron network with respect to more sophisticated convolution network models.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transition-aware human activity recognition using an ensemble deep learning framework;Computers in Human Behavior;2025-01

2. Energy-aware human activity recognition for wearable devices: A comprehensive review;Pervasive and Mobile Computing;2024-11

3. Privacy preservation in sensor-based Human Activity Recognition through autoencoders for low-power IoT devices;Internet of Things;2024-07

4. Complexity-aware Features Selection for Wrist-worn Human Activity Recognition;2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops);2024-03-11

5. A Vision-based Virtual Sensor to Enhance Privacy and Energy Efficiency on Edge Computing;2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops);2024-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3