Abstract
Solid rotor induction machines are still used in high-speed systems. A two-dimensional field-circuit model based on the finite element method and the complex magnetic vector potential has been shown as a very time-effective tool in the analysis of their steady states compared to time-domain models. This continuation work presents a validated computational algorithm that enables the inclusion of the nonsinusoidal and/or asymmetrical voltage supply in the multi-harmonic field-circuit model of these machines that was presented in the previous works by the authors. The extended model accounts for both spatial harmonics due to slotting and/or winding distribution and the time-harmonics due to voltage waveform. The applicability range of the model therefore increases to cases when the machine is supplied with a nonsinusoidal three-phase system of voltages with symmetry or asymmetry that can be decomposed into three symmetrical components. Its short execution time characteristic allows for much more insightful design studies of the contribution of voltage supply- and slotting-related harmonics to the overall efficiency of the machine than is possible with the time-consuming time-domain models. The proposed computational framework has never been presented in the literature. The model is verified positively by the comprehensive time-domain model. It is especially useful in design studies on solid rotor induction motors related to the optimisation of the efficiency of induction motor-based drive systems.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献