Affiliation:
1. College of Information Engineering, Northwest A&F University, Xianyang 712100, China
Abstract
The accurate breeding of individual sheep has shown outstanding effectiveness in food quality tracing, prevention of fake insurance claims, etc., for which sheep identification is the key to guaranteeing its high performance. As a promising solution, sheep identification based on sheep face detection has shown potential effectiveness in recent studies. Unfortunately, the performance of sheep face detection has still been a challenge due to diverse background illumination, sheep face angles and scales, etc. In this paper, an effective and lightweight sheep face detection method based on an improved RetinaFace algorithm is proposed. In order to achieve an accurate and real-time detection of sheep faces on actual sheep farms, the original RetinaFace algorithm is improved in two main aspects. Firstly, to accelerate the speed of multi-scale sheep face feature extraction, an improved MobileNetV3-large with a switchable atrous convolution is optimally used as the backbone network of the proposed algorithm. Secondly, the channel and spatial attention modules are added into the original detector module to highlight important facial features of the sheep. This helps obtain more discriminative sheep face features to mitigate against the challenges of diverse face angles and scale in sheep. The experimental results on our collected real-world scenarios have shown that the proposed method outperforms others with an F1score of 95.25%, an average precision of 96.00%, a model size of 13.20 M, an average processing time of 26.83 ms, and a parameter of 3.20 M.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Student Scientific and Technological Program
Key Industry Innovation Chain Project of Shaanxi Province
Integration Project of Yangling Livestock Industry Innovation Center
Subject
General Veterinary,Animal Science and Zoology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献