Conformable Electrode Arrays for Wearable Neuroprostheses

Author:

RaviChandran Narrendar12ORCID,Teo Mei Ying3,McDaid Andrew1,Aw Kean3ORCID

Affiliation:

1. Medical Devices and Technologies Group, Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland 1010, New Zealand

2. Singapore Eye Research Institute, Singapore 169856, Singapore

3. Smart Materials and Microtechnologies Group, Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland 1010, New Zealand

Abstract

Wearable electrode arrays can selectively stimulate muscle groups by modulating their shape, size, and position over a targeted region. They can potentially revolutionize personalized rehabilitation by being noninvasive and allowing easy donning and doffing. Nevertheless, users should feel comfortable using such arrays, as they are typically worn for an extended time period. Additionally, to deliver safe and selective stimulation, these arrays must be tailored to a user’s physiology. Fabricating customizable electrode arrays needs a rapid and economical technique that accommodates scalability. By leveraging a multilayer screen-printing technique, this study aims to develop personalizable electrode arrays by embedding conductive materials into silicone-based elastomers. Accordingly, the conductivity of a silicone-based elastomer was altered by adding carbonaceous material. The 1:8 and 1:9 weight ratio percentages of carbon black (CB) to elastomer achieved conductivities between 0.0021–0.0030 S cm−1 and were suitable for transcutaneous stimulation. Moreover, these ratios maintained their stimulation performance after several stretching cycles of up to 200%. Thus, a soft, conformable electrode array with a customizable design was demonstrated. Lastly, the efficacy of the proposed electrode arrays to stimulate hand function tasks was evaluated by in vivo experiments. The demonstration of such arrays encourages the realization of cost-effective, wearable stimulation systems for hand function restoration.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3