High-Speed Imaging of Water Hammer Cavitation in Oil–Hydraulic Pipe Flow

Author:

Jansson MarcusORCID,Andersson MagnusORCID,Karlsson MattsORCID

Abstract

A pipe water hammer with column separation was studied in a range of flow rates (Re=465 to 2239) in a test rig with an acrylic glass observation section. Pressure transients were measured with piezoresistive pressure sensors, while the gas evaporation and condensation were captured by high-speed recording with a Photron SA-Z at a frame rate of 75,000 fps. Separation lengths were estimated by a threshold value in the images. The results did not show a sharp gas–oil interface but consisted of small, dispersed bubbles mixed with larger vapor structures, where the bubbles seemed to become smaller after each collapse. These findings differ from the transient cavitating characteristics commonly reported in nonhydraulic piping systems governed by different fluid properties and time scales. Good repeatability, both in terms of pressure transients and bubble distribution, was observed. The column separation was quantified as a metric of separation length, which was consistent between the tests. Combined with pressure measurements, these results may assist in obtaining a better understanding of the transient cavitation dynamics within oil–hydraulic systems as well as be used to improve modelling strategies towards more accurate cavitation erosion predictions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3