Effect of the Size and Location of Liquid Cooling System on the Performance of Square-Shaped Li-Ion Battery Modules of an Electric Vehicle

Author:

Sun Qing-ZhuORCID,Kim Chul-HoORCID

Abstract

As the core powertrain component of electric vehicles, batteries release heat when charging and discharging due to the chemical reactions between the battery elements and internal resistance. To avoid problems resulting from abnormal temperatures, such as performance and lifespan issues, an effective battery cooling system is required. This paper presents a fundamental study of battery module liquid cooling through a three-dimensional numerical analysis. CFD numerical tests as conducted here are based on the heat transfer characteristics and on the liquid cooling theory, and the temperature distribution and thermal conductivity are analyzed qualitatively and quantitatively using Simcenter STAR CCM+ version 2016 (Siemens Digital Industries Software, Plano, TX, USA). A simulation uses a square-shell lithium-ion battery-made module with two different liquid cooling systems at different positions of the module. The results of the numerical study indicate that the bottom cooling system shows a better battery module temperature difference that is approximately 80% less than that of the side cooling system. For the side cooling system, it is better in terms of the maximum temperature of the battery module, which is approximately 20% lower than that in the bottom cooling system, but this system does not offer very good control of the temperature difference, which is also its greatest shortcoming compared to the bottom cooling system.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference37 articles.

1. Effects of electric vehicles on power systems in Northern Europe;Karsten;Energy,2012

2. Review on Battery Thermal Management System for Electric Vehicles;Jaewan;Appl. Therm. Eng.,2018

3. Temperature effect and thermal impact in lithium-ion batteries: A review

4. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review;Huaqiang;Energy Convers. Manag.,2017

5. Research on Thermal Management System of Electric Vehicle Power Battery Pack;Jing;Acad. J. Eng. Technol. Sci.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3