Local Deformation Behavior of the Copper Harmonic Structure near Grain Boundaries Investigated through Nanoindentation

Author:

Paul Viola,Wakeda Masato,Ameyama KeiORCID,Ota-Kawabata Mie,Ohmura Takahito

Abstract

The copper harmonic structure, which consists of a coarse-grained “core” surrounded by a three-dimensional continuously connected fine-grained “shell,” exhibits both high ductility and high strength. In the present study, dislocation interactions at the shell–core boundary in the copper harmonic structure were directly measured using nanoindentation and microstructural observations via kernel average misorientation (KAM) to further understand the reason for its excellent mechanical properties. KAM analysis showed that the dislocation density in the vicinity of the shell–core boundary within the core region gradually increases with increasing plastic strain. The variation in the nanohardness exactly corresponds to the KAM, indicating that the higher strength is primarily caused by the higher dislocation density. The critical load for nanoindentation-induced plasticity initiation was lower at the shell–core boundary than at the core–core boundary, indicating a higher potency of dislocation emission at the shell–core boundary. Because dislocation–dislocation interactions are one of the major causes of the increase in the flow stress leading to higher strain hardening rates during deformation, the excellent balance between strength and ductility is attributed to the higher potency of dislocation emission at the shell–core boundary.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3