Multivariate Correlation Analysis of the Electroconductive Textiles Obtained Using Functionalization by Radio-Frequency Oxygen Plasma Treatments

Author:

Aileni Raluca MariaORCID,Chiriac Laura,Toma Doina,Sandulache Irina

Abstract

This paper presents a study concerning the preliminary treatments in radiofrequency (RF)oxygen (O2) plasma used to obtain a hydrophilic effect on raw cotton fabrics followed by electroconductive thin film deposition to obtain electroconductive textile surfaces. In addition, this study presents a multivariate correlation analysis of experimental parameters. The treatment using RF plasma O2 aimed to increase the hydrophilic character of the raw fabric and adherence of paste-based polymeric on polyvinyl alcohol (PVA) matrix and nickel (Ni), silver (Ag) or copper (Cu) microparticles. The purpose of the research was to develop electroconductive textiles for flexible electrodes, smart materials using a clean technology such as radiofrequency (RF) plasma O2 to obtain a hydrophilic surface with zero wastewater and reduced chemicals and carbon footprint. To achieve the foreseen results, we used advanced functionalization technologies such as RF plasma O2, followed by scraping a thin film of conductive paste-based Ni, Ag or Cu microparticles, and multivariate correlation methods to observe the dependence between parameters involved (dependent and independent variables). Overall, the fabrics treated in plasma with O2 using a kHz or MHz generator and power 100–200 W present an excellent hydrophilic character obtained in 3 min. After RF O2 plasma functionalization, a thin film based on polymeric matrix PVA and Ni microparticles have been deposited on the fabric surface to obtain electroconductive materials.

Funder

MINISTRY OF RESEARCH, INNOVATION 302 AND DIGITALIZATION

Publisher

MDPI AG

Subject

General Materials Science

Reference35 articles.

1. Plasma treatment of textile fibers

2. Plasma Technology for Hyperfunctional Surfaces: Food, Biomedical and Textile Applications,2010

3. Surface Hydrophilization of Polyimide Films Using Atmospheric Damage-Free Multigas Plasma Jet Source

4. Atmospheric Pressure Glow Discharge of Helium-Oxygen Plasma Treatment on Polyester/Cotton Blended Fabric;Kale;Indian J. Fibre Text. Res.,2011

5. Improvements in the dyeability of polyester fabrics by atmospheric pressure oxygen plasma treatment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3