Mainstreaming Energetic Resilience by Morphological Assessment in Ordinary Land Use Planning. The Case Study of Moncalieri, Turin (Italy)

Author:

Mohabat Doost Danial,Buffa Alessandra,Brunetta GraziaORCID,Salata Stefano,Mutani GuglielminaORCID

Abstract

Energetic resilience is seen as one of the most prominent fields of investigation in the upcoming years. The increasing efficiency of urban systems depends on the conversion of energetic production of buildings, and therefore, from the capacity of urban systems to be more rational in the use of renewable resources. Nevertheless, the integration of the energetic regulation into the ordinary urban planning documents is far from being reached in most of planning processes. In Italy, mainstreaming energetic resilience in ordinary land use planning appears particularly challenging, even in those Local Administrations that tried to implement the national legislation into Local Building Regulation. In this work, an empirical methodology to provide an overall assessment of the solar production capacity has been applied to selected indicators of urban morphology among the different land use parcel-zones, while implementing a geographic information system-based approach to the city of Moncalieri, Turin (Italy). Results demonstrate that, without exception, the current minimum energy levels required by law are generally much lower than the effective potential solar energy production that each land use parcel-zone could effectively produce. We concluded that local planning processes should update their land use plans to reach environmental sustainability targets, while at the same time the energetic resilience should be mainstreamed in urban planning by an in-depth analysis of the effective morphological constraints. These aspects may also represent a contribution to the international debates on energetic resilience and on the progressive inclusion of energy subjects in the land use planning process.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3