Abstract
Energetic resilience is seen as one of the most prominent fields of investigation in the upcoming years. The increasing efficiency of urban systems depends on the conversion of energetic production of buildings, and therefore, from the capacity of urban systems to be more rational in the use of renewable resources. Nevertheless, the integration of the energetic regulation into the ordinary urban planning documents is far from being reached in most of planning processes. In Italy, mainstreaming energetic resilience in ordinary land use planning appears particularly challenging, even in those Local Administrations that tried to implement the national legislation into Local Building Regulation. In this work, an empirical methodology to provide an overall assessment of the solar production capacity has been applied to selected indicators of urban morphology among the different land use parcel-zones, while implementing a geographic information system-based approach to the city of Moncalieri, Turin (Italy). Results demonstrate that, without exception, the current minimum energy levels required by law are generally much lower than the effective potential solar energy production that each land use parcel-zone could effectively produce. We concluded that local planning processes should update their land use plans to reach environmental sustainability targets, while at the same time the energetic resilience should be mainstreamed in urban planning by an in-depth analysis of the effective morphological constraints. These aspects may also represent a contribution to the international debates on energetic resilience and on the progressive inclusion of energy subjects in the land use planning process.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献