Improved Video-Based Point Cloud Compression via Segmentation

Author:

Tohidi Faranak1ORCID,Paul Manoranjan1ORCID,Ulhaq Anwaar2ORCID,Chakraborty Subrata345ORCID

Affiliation:

1. School of Computing Mathematics and Engineering, Charles Sturt University, Bathurst, NSW 2795, Australia

2. School of Engineering and Technology, Centre for Intelligent Systems, Central Queensland University, Sydney Campus, Rockhampton, QLD 4701, Australia

3. Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia

4. Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia

5. Griffith Business School, Griffith University, Brisbane, QLD 4111, Australia

Abstract

A point cloud is a representation of objects or scenes utilising unordered points comprising 3D positions and attributes. The ability of point clouds to mimic natural forms has gained significant attention from diverse applied fields, such as virtual reality and augmented reality. However, the point cloud, especially those representing dynamic scenes or objects in motion, must be compressed efficiently due to its huge data volume. The latest video-based point cloud compression (V-PCC) standard for dynamic point clouds divides the 3D point cloud into many patches using computationally expensive normal estimation, segmentation, and refinement. The patches are projected onto a 2D plane to apply existing video coding techniques. This process often results in losing proximity information and some original points. This loss induces artefacts that adversely affect user perception. The proposed method segments dynamic point clouds based on shape similarity and occlusion before patch generation. This segmentation strategy helps maintain the points’ proximity and retain more original points by exploiting the density and occlusion of the points. The experimental results establish that the proposed method significantly outperforms the V-PCC standard and other relevant methods regarding rate–distortion performance and subjective quality testing for both geometric and texture data of several benchmark video sequences.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3