Real-Time Monitoring of Cable Sag and Overhead Power Line Parameters Based on a Distributed Sensor Network and Implementation in a Web Server and IoT

Author:

Nicola Claudiu-Ionel12ORCID,Nicola Marcel12ORCID,Sacerdoțianu Dumitru1,Pătru Ion1

Affiliation:

1. Research and Development Department, National Institute for Research, Development and Testing in Electrical Engineering—ICMET Craiova, 200746 Craiova, Romania

2. Department of Automatic Control and Electronics, University of Craiova, 200585 Craiova, Romania

Abstract

Based on the need for real-time sag monitoring of Overhead Power Lines (OPL) for electricity transmission, this article presents the implementation of a hardware and software system for online monitoring of OPL cables. The mathematical model based on differential equations and the methods of algorithmic calculation of OPL cable sag are presented. Considering that, based on the mathematical model presented, the calculation of cable sag can be done in different ways depending on the sensors used, and the presented application uses a variety of sensors. Therefore, a direct calculation is made using one of the different methods. Subsequently, the verification relations are highlighted directly, and in return, the calculation by the alternative method, which uses another group of sensors, generates both a verification of the calculation and the functionality of the sensors, thus obtaining a defect observer of the sensors. The hardware architecture of the OPL cable online monitoring application is presented, together with the main characteristics of the sensors and communication equipment used. The configurations required to transmit data using the ModBUS and ZigBee protocols are also presented. The main software modules of the OPL cable condition monitoring application are described, which ensure the monitoring of the main parameters of the power line and the visualisation of the results both on the electricity provider’s intranet using a web server and MySQL database, and on the Internet using an Internet of Things (IoT) server. This categorisation of the data visualisation mode is done in such a way as to ensure a high level of cyber security. Also, the global accuracy of the entire OPL cable sag calculus system is estimated at 0.1%. Starting from the mathematical model of the OPL cable sag calculation, it goes through the stages of creating such a monitoring system, from the numerical simulations carried out using Matlab to the real-time implementation of this monitoring application using Laboratory Virtual Instrument Engineering Workbench (LabVIEW).

Funder

European Regional Development Fund Competitiveness Operational Program

Installation of National Interest “System for generating, measuring and recording short circuit currents”—SPMICS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3