Analysis of Tortuosity in Compacts of Ternary Mixtures of Spherical Particles

Author:

Zharbossyn Assem,Berkinova Zhazira,Boribayeva Aidana,Yermukhambetova AssiyaORCID,Golman BorisORCID

Abstract

Herein, an approach is proposed to analyze the tortuosity of porous electrodes using the radical Voronoi tessellation. For this purpose, a series of particle compacts geometrically similar to the actual porous electrode were generated using discrete element method; the radical Voronoi tessellation was constructed for each compact to characterize the structural properties; the tortuosity of compact porous structure was simulated by applying the Dijkstra’s shortest path algorithm on radical Voronoi tessellation. Finally, the relationships were established between the tortuosity and the composition of the ternary particle mixture, and between the tortuosity and the radical Voronoi cell parameters. The following correlations between tortuosity values and radical Voronoi cell parameters were found: larger faces and longer edges of radical Voronoi cell leads to the increased fraction of larger values of tortuosity in the distribution, while smaller faces and shorter edges of radical Voronoi cell contribute to the increased fraction of smaller tortuosity values, being the tortuosity values more uniform with narrower distribution. Thus, the compacts with enhanced diffusion properties are expected to be obtained by packing particle mixtures with high volume fraction of small and medium particles. These results will help to design the well-packed particle compacts having improved diffusion properties for various applications including porous electrodes.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3