Evaluation of China’s Marine Aquaculture Sector’s Green Development Level Using the Super-Efficiency Slacks-Based Measure and Global Malmquist–Luenberger Index Models

Author:

Yang Deli1,Wang Qionglei1

Affiliation:

1. School of Economics and Management, Shanghai Ocean University, Shanghai 201306, China

Abstract

Given China’s rapidly expanding marine aquaculture industry, the associated ecological issues have garnered widespread attention. Therefore, it is crucial to speed up the green growth of marine aquaculture in order to save the environment and use resources sustainably. In order to statically assess and dynamically analyze the green development efficiency levels of marine aquaculture in nine coastal provinces of China from 2012 to 2021, this study uses the non-expected output super-efficiency Slacks-Based Measure model and the Global Malmquist–Luenberger index method. Additionally, it integrates input–output redundancy rates to analyze the causes of efficiency loss. Static efficiency primarily reflects whether a region’s inputs and outputs at a given point in time reach an effective efficiency level, while the level of dynamic efficiency mainly gauges the dynamic changes in the efficiency of green production. The results show that, from 2012 to 2021, China’s marine aquaculture industry’s average static efficiency of green output was 0.705. The southern marine economic zone exhibited the highest static efficiency value in the green development of marine aquaculture, displaying a stepped distribution pattern of “south–north–east” in decreasing order. The input–output redundancy analysis reveals that the primary causes of static efficiency loss in China’s marine aquaculture industry are attributed to varying degrees of redundant inputs and carbon emission outputs. Looking through the lens of the GML index, the annual average growth rate of the green total factor productivity in China’s marine aquaculture stands at 11.1%, with an annual average change in technical efficiency of 1.8%, while the annual average change in technological progress amounts to 9.1%, suggesting that technological advancement is the primary driver of the rise in green total factor productivity in China’s marine aquaculture sector. According to the study, in order to encourage China’s marine aquaculture industry to grow sustainably, efforts should be made not only to accelerate technological advancements but also to enhance technical efficiency. Policies that are specifically designed for the local environment should be developed to support the sustainable development of the marine aquaculture sector and to make resource allocation easier.

Publisher

MDPI AG

Reference28 articles.

1. Yang, Z.Y. (2004). On the Non point Source Nature of Endogenous Pollution in Fisheries and the Environmental and Economic Policies for Its Control. Product. Res., 28–30.

2. The impact of heterogeneous environmental regulation on the green development of fishery in China;Yu;Sci. Geogr. Sin.,2024

3. Chen, Q. (2023). Green and healthy aquaculture actions: Selection preferences and sources of heterogeneity of farmers: An analysis based on optimal and worst selection experiment. J. Agrotech. Econ., 64–79.

4. Thinking on promoting the new pattern of green development of aquaculture in China;Lu;China Fish.,2018

5. Cao, J.H., and Sang, F.E. (2020). Thinking on the theory, model and evaluation method of green development of aquaculture industry. Ecol. Econ., 36.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3