Porous Polymer Structures with Tunable Mechanical Properties Using a Water Emulsion Ink

Author:

Dantzler Joshua Z. R.1ORCID,Gomez Sofia Gabriela1ORCID,Gonzalez Stephanie1,Gonzalez Diego2,Loera Martinez Alan O.1,Marquez Cory3,Hassan Md Sahid1ORCID,Zaman Saqlain1ORCID,Lopez Alexis1,Mahmud Md Shahjahan1,Lin Yirong1

Affiliation:

1. Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA

2. Department of Computer Science, The University of Texas at El Paso, El Paso, TX 79968, USA

3. Sandia National Laboratories, Albuquerque, NM 87185, USA

Abstract

Recently, the manufacturing of porous polydimethylsiloxane (PDMS) with engineered porosity has gained considerable interest due to its tunable material properties and diverse applications. An innovative approach to control the porosity of PDMS is to use transient liquid phase water to improve its mechanical properties, which has been explored in this work. Adjusting the ratios of deionized water to the PDMS precursor during blending and subsequent curing processes allows for controlled porosity, yielding water emulsion foam with tailored properties. The PDMS-to-water weight ratios were engineered ranging from 100:0 to 10:90, with the 65:35 specimen exhibiting the best mechanical properties with a Young’s Modulus of 1.17 MPa, energy absorption of 0.33 MPa, and compressive strength of 3.50 MPa. This led to a porous sample exhibiting a 31.46% increase in the modulus of elasticity over a bulk PDMS sample. Dowsil SE 1700 was then added, improving the storage capabilities of the precursor. The optimal storage temperature was probed, with −60 °C resulting in great pore stability throughout a three-week duration. The possibility of using these water emulsion foams for paste extrusion additive manufacturing (AM) was also analyzed by implementing a rheological modifier, fumed silica. Fumed silica’s impact on viscosity was examined, revealing that 9 wt% of silica demonstrates optimal rheological behaviors for AM, bearing a viscosity of 10,290 Pa·s while demonstrating shear-thinning and thixotropic behavior. This study suggests that water can be used as pore-formers for PDMS in conjunction with AM to produce engineered materials and structures for aerospace, medical, and defense industries as sensors, microfluidic devices, and lightweight structures.

Funder

NSF

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3