Modulation of the Marine Environment in the Natal Bight

Author:

Jury Mark R.12ORCID

Affiliation:

1. Physics Department, University of Puerto Rico Mayagüez, Mayaguez, PR 00682, USA

2. Geography Department, University Zululand, KwaDlangezwa 3886, South Africa

Abstract

Modulation of the marine environment in the Natal Bight (~29.1°S, 31.6°E) was studied using daily high-resolution climate reanalysis products and monthly satellite green- and red-band reflectance in the period 2002–2022. The KwaZulu-Natal shelf edge is characterized by a narrow band of upwelling next to the warm Agulhas Current. Strong, reversing longshore winds ~7 m/s and meandering poleward flow ~1 m/s pulse the system, but along the leeward coast that forms the Natal Bight, environmental conditions are buffered by a weak cyclonic gyre. Wind and current shear create a shadow zone that aggregates plankton, recycles nutrients, and sustains marine resources. The seasonal cycle is of high amplitude: the surface heat balance reaches +70 W/m2 in December, followed by river discharges ~3 M m3/yr of fresh nutrient-rich water that peak in February. This induces a buoyant surface layer that inhibits wind wave turbulence during summer. By contrast, winter (June–August) cooling −95 W/m2 and frequent cyclonic storminess deepen the mixed layer from 25 to 65 m, enabling wind wave turbulence to reach the seafloor (Tugela Bank). Red-band reflectance increases 3-fold from summer to winter and is significantly correlated with net heat balance −0.54, daily wave heights > 2.5 m +0.51, mixed layer depth +0.47, sea surface temp −0.41, and wind vorticity −0.39. Daily longshore winds from the northeast and southwest were, unexpectedly, most amplified in spring (August–October). The seasonality exhibits sequential effects that supports year-round marine nutrification in the Natal Bight. Intra-seasonal fluctuations were related to meandering of the Agulhas Current and changes in longshore winds and shelf waves that impart significant pulsing of near-shore currents at 4–9-day periods. Although the cyclonic gyre in the Natal Bight spins up and down, SST variance was found to be relatively low in its center, where external influences are buffered. Considering linear trends for winds and runoff and surface temperature over the period 1950–2021, we found that northeasterlies increased, runoff decreased, and inshore sea surface temperatures have warmed slowly relative to the adjacent land surface temperature. New insights derive from the use of monthly satellite red-band reflectance and daily 10 km climate reanalysis fields to understand how air–land–sea fluxes modulate the marine environment in the Natal Bight.

Funder

South African Department of Higher Education via the University of Zululand

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference70 articles.

1. Spawning on the edge: Spawning grounds and nursery areas around the southern African coastline;Hutchings;Mar. Freshw. Res.,2002

2. Features of the shelf circulation off the Natal coast;Pearce;S. Afr. J. Sci.,1978

3. The coastal ocean off the east coast of South Africa;Schumann;Trans. Roy. Soc. S. Afr.,1987

4. Dynamics and role of the Durban cyclonic eddy in the KwaZulu-Natal Bight ecosystem;Guastella;Afr. J. Mar. Sci.,2016

5. The Natal pulse: An extreme transient on the Agulhas Current;Lutjeharms;J. Geophys. Res.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3