Development of High-Fidelity Numerical Methodology Based on Wavenumber-Frequency Transform for Quantifying Internal Aerodynamic Noise in Critical Nozzle

Author:

Ku Garam,Lee Songjune,Cheong CheolungORCID,Kang Woong,Kim Kuksu

Abstract

In industrial fields dealing with high-temperature and high-pressure gas such as chemical, petrochemical, and offshore oil production plants, piping systems with valves are frequently used to protect the relevant system and equipment from being damaged by such gases. However, excessive noise is sometimes generated by the valve flow in the piping system, causing so-called acoustic induced vibration in the pipe wall. Therefore, it is of great importance to design the related system to avoid this phenomenon. In this study, a high-fidelity numerical procedure is proposed to assess the acoustic power generated by pressure relief devices in a pipe. The method consists of three sequential steps: high accuracy large eddy simulation, wavenumber-frequency transform, and duct acoustic theory. The critical nozzle is selected as a target system since it is commonly used as a flowmeter and thus there are a lot of relevant data for comparison. First, the steady Reynold-Averaged Navier–Stokes (RANS) solver is used to predict the flow rate of the two-dimensional axisymmetric critical nozzles, and its validity is confirmed by comparing the predicted results with the measured ones. There is good agreement between the two results. Then, a high accuracy Large Eddy Simulation (LES) technique is performed on the three-dimensional critical nozzle, and the steady-state RANS result is used as the initial condition to accelerate the convergence of the unsteady simulation. The validity of the unsteady LES results is also confirmed by comparing them with measured surface pressure data. The wavenumber-frequency transform is taken on the LES results, and the compressible surface pressure components matching the acoustical duct modes are identified in the wavenumber-frequency pressure diagram. The inverse wavenumber-frequency transform taken on the compressible pressure components leads to the acoustic power spectrum. These results reveal that the current numerical procedure can be used to more accurately predict the acoustic power generated by pressure relief device in the piping system.

Funder

National Research Foundation of South Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference17 articles.

1. Acoustic and Turbulence Flow Induced Vibration in Piping Systems: A Real Problem for LNG Facilities;Cowling,2016

2. Acoustically Induced Piping Vibration in High Capacity Pressure Reducing Systems;Carucci,1982

3. Designing Piping Systems Against Acoustically Induced Structural Fatigue

4. Acoustically Induced Structural Fatigue of Piping Systems

5. L-002 Piping System Layout, Design and Structural Analysis;Veritas,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3