Hyper-spectral Recovery of Cerebral and Extra-Cerebral Tissue Properties Using Continuous Wave Near-Infrared Spectroscopic Data

Author:

Veesa Joshua DeepakORCID,Dehghani HamidORCID

Abstract

Near-infrared spectroscopy (NIRS) is widely used as a non-invasive method to monitor the hemodynamics of biological tissue. A common approach of NIRS relies on continuous wave (CW) methodology, i.e. utilizing intensity-only measurements, and, in general, assumes homogeneity in the optical properties of the biological tissue. However, in monitoring cerebral hemodynamics within humans, this assumption is not valid due to complex layered structure of the head. The NIRS signal that contains information about cerebral blood hemoglobin levels is also contaminated with extra-cerebral tissue hemodynamics, and any recovery method based on such a priori homogenous approximation would lead to erroneous results. In this work, utilization of hyper-spectral intensity only measurements (i.e., CW) at multiple distances are presented and are shown to recover two-layered tissue properties along with the thickness of top layer, using an analytical solution for a two-layered semi-infinite geometry. It is demonstrated that the recovery of tissue oxygenation index (TOI) of both layers can be achieved with an error of 4.4%, with the recovered tissue thickness of 4% error. When the data is measured on a complex tissue such as the human head, it is shown that the semi-infinite recovery model can lead to uncertain results, whereas, when using an appropriate model accounting for the tissue-boundary structure, the tissue oxygenation levels are recovered with an error of 4.2%, and the extra-cerebral tissue thickness with an error of 11.8%. The algorithm is finally used together with human subject data, demonstrating robustness in application and repeatability in the recovered parameters that adhere well to expected published parameters.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference23 articles.

1. Postoperative Neuropsychological Dysfunction and Cerebral Oxygenation During Cardiac Surgery

2. Cerebral oxygen supply and utilization during infant cardiac surgery

3. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology

4. Absolute quantification methods in tissue near-infrared spectroscopy;Matcher;Int. Soc. Opt. Photonics,1995

5. Quantitative Reflectance Spectrophotometry For The Noninvasive Measurement Of Photosensitizer Concentration In Tissue During Photodynamic Therapy;Patterson;Int. Soc. Opt. Photonics,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3