Estimation of Underground MV Network Failure Types by Applying Machine Learning Methods to Indirect Observations

Author:

Louro MiguelORCID,Ferreira Luís

Abstract

Electrical utilities performance is measured by various indicators, of which the most important are very dependent on the interruption time after a failure in the network has occurred, such as SAIDI. Therefore, they are constantly looking for new techniques to decrease the fault location and repair times. A possibility to innovate in this field is to estimate the failed network component when a fault occurs. This paper presents the conclusion of an analysis carried out by the authors with the aim to estimate failure types of underground MV networks based on observable indirect variables. The variables needed to carry out the analysis must be available shortly after the failure occurrence, which is facilitated by a smart-grid infrastructure, to allow for a quick estimation. This paper uses the groundwork already carried out by the authors on ambient variables, historical variables, and disturbance recordings to design an estimator to predict between four MV cable network failure types. The paper presents relevant analyses on the design and performance of various machine learning classification algorithms for estimation of the types of MV cable network failures using real-world data. Optimization of performance was carried out, resulting in an estimator with an overall 68% accuracy rate. Accuracy rates of 94% for cable failure, 63% for excavations, and 79% secondary busbar failures were achieved; as for cable joints, the accuracy was poor due to the difficulty to identify a feature that can be used to separate this failure type from cable failures. Future work to improve that accuracy is discussed.

Funder

Fundacao para a Ciencia e a Tecnologia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3