Enhanced Outcrossing, Directional Selection and Transgressive Segregation Drive Evolution of Novel Phenotypes in Hybrid Swarms of the Dutch Elm Disease Pathogen Ophiostoma novo-ulmi

Author:

Brasier Clive,Franceschini Selma,Forster Jack,Kirk Susan

Abstract

In the 1970s, clones of the two subspecies of Ophiostoma novo-ulmi, subsp. americana (SSAM) and subsp. novo-ulmi (SSNU) began to overlap in Europe, resulting in hybrid swarms. By 1983–1986, hybrids with high, SSAM-like growth and pathogenic fitness comprised ~75% of popula-tions at Limburg, Netherlands and Orvieto, Italy. We resampled these populations in 2008 to examine trends in hybrid fitness traits. Since preliminary sampling in 1979–1980, MAT-1 locus frequency had increased from ~0% to ~32% at Orvieto and 5% to ~43% at Limburg, and vegeta-tive incompatibility type frequency had changed from near clonal to extremely diverse at both sites. This represents an enormous increase in outcrossing and recombination potential, due in part to selective acquisition (under virus pressure) of MAT-1 and vic loci from the resident O. ulmi and in part to SSAM × SSNU hybridisation. Overt virus infection in the 2008 samples was low (~4%), diagnostic SSAM and SSNU cu and col1 loci were recombinant, and no isolates exhib-ited a parental SSAM or SSNU colony pattern. At both sites, mean growth rate and mean patho-genicity to 3–5 m clonal elm were high SSAM-like, indicating sustained directional selection for these characters, though at Orvieto growth rate was slower. The once frequent SSNU-specific up-mut colony dimorphism was largely eliminated at both sites. Perithecia formed by Limburg isolates were mainly an extreme, long-necked SSNU-like form, consistent with transgressive segregation resulting from mismatch of SSAM and SSNU developmental loci. Orvieto isolates produced more parental-like perithecia, suggesting the extreme phenotypes may have been se-lected against. The novel phenotypes in the swarms are remodelling O. novo-ulmi in Europe. Locally adapted genotypes may emerge.

Funder

Leverhulme Trust

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3