Hydroponic Lettuce Production Using Treated Post-Hydrothermal Liquefaction Wastewater (PHW)

Author:

Jesse Samuel D.,Zhang Yuanhui,Margenot Andrew J.,Davidson Paul C.ORCID

Abstract

Post-hydrothermal liquefaction wastewater (PHW) is a byproduct of the hydrothermal liquefaction (HTL) process. Previous research indicates that PHW is free of pathogens and contains nutrients needed for crop growth, but may contain metal(loid)s. This study evaluated the ability of differentially treated PHW for effective and safe hydroponic lettuce production. Water containing only hydroponic fertilizer (Source Water 1) had the highest total dry yield of all five treatments; 3.1 times higher than Source Water 2 (diluted PHW with sand filtration), 3.5 times higher than Source Water 3 (diluted PHW with sand + carbon filtration), 2.6 times higher than Source Water 4 (diluted and nitrified PHW with sand filtration), and 1.3 times higher than Source Water 5 (diluted PHW supplemented with hydroponic fertilizer). Findings also indicated that while PHW was below the US Department of Agriculture Foreign Agriculture Service maximum levels for cadmium, lead, and mercury in food, the concentration of arsenic was 1.6, 2.4, and 2.0 times higher than the maximum level for Source Waters 2, 3, and 4, respectively. There was no detectable E. coli or fecal coliforms in any of the treated PHW. While nitrogen was present in the raw PHW, only 0.03% was NO3-N and NO2-N. Diluted PHW supplemented with hydroponic fertilizer had lower lettuce yield than hydroponic fertilizer alone, indicating a potential non-nutrient inhibition of plant growth by PHW. Therefore, this research demonstrates that treated PHW does not pose a biological contamination risk for lettuce, but may entail levels of arsenic in edible leaf tissues that are in excess of safe levels. Additional treatment of PHW can benefit crop production by allowing crop utilization of a greater fraction of total nitrogen in the raw PHW.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference30 articles.

1. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass

2. Chemical compositions and wastewater properties of aqueous phase (wastewater) produced from the hydrothermal treatment of fresh biomass: A review. energy sources, part a: Recover. util;Leng;Environ. Eff.,2018

3. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies

4. Recent progress in the direct liquefaction of typical biomass

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3