A Self-Predictable Crop Yield Platform (SCYP) Based On Crop Diseases Using Deep Learning

Author:

Lee SangSik,Jeong YiNa,Son SuRak,Lee ByungKwan

Abstract

This paper proposes a self-predictable crop yield platform (SCYP) based on crop diseases using deep learning that collects weather information (temperature, humidity, sunshine, precipitation, etc.) and farm status information (harvest date, disease information, crop status, ground temperature, etc.), diagnoses crop diseases by using convolutional neural network (CNN), and predicts crop yield based on factors such as climate change, crop diseases, and others by using artificial neural network (ANN). The SCYP consists of an image preprocessing module (IPM) to determine crop diseases through the Google Vision API and image resizing, a crop disease diagnosis module (CDDM) based on CNN to diagnose the types and extent of crop diseases through photographs, and a crop yield prediction module (CYPM) based on ANN by using information of crop diseases, remaining time until harvest (based on the date), current temperature, humidity and precipitation (amount of snowfall) in the area, sunshine amount, ground temperature, atmospheric pressure, moisture evaporation in the ground, etc. Four experiments were conducted to verify the efficiency of the SCYP. In the CDMM, the accuracy and operation time of each model were measured using three neural network models: CNN, region-CNN(R-CNN), and you only look once (YOLO). In the CYPM, rectified linear unit (ReLU), Sigmoid, and Step activation functions were compared to measure ANN accuracy. The accuracy of CNN was about 3.5% higher than that of R-CNN and about 5.4% higher than that of YOLO. The operation time of CNN was about 37 s less than that of R-CNN and about 72 s less than that of YOLO. The CDDM had slightly less operation time, but in this paper, we prefer accuracy over operation time to diagnose crop diseases efficiently and accurately. When the activation function of the ANN used in the CYPM was ReLU, the accuracy of the ANN was 2% higher than that of Sigmoid and 7% higher than that of Step. The CYPM prediction was about 34% more accurate when using multiple diseases than when not using them. Therefore, the SCYP can predict farm yields more accurately than traditional methods.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference27 articles.

1. Use Case: Precision Agriculture, the Internet of Things, and Big Data Managementhttps://helioswire.com/case-study-precision-agriculture-the-internet-of-things-and-big-data-management/

2. Precision Ag & Big Data Learninghttps://www.precisionag.com/systems-management/data/precision-ag-big-data-learning/

3. Plant Village: A Deep-Learning App Diagnoses Crop Diseaseshttps://actu.epfl.ch/news/plantvillage-a-deep-learning-app-diagnoses-crop-di/

4. IoT and agriculture data analysis for smart farm;Jirapond;Comput. Electron. Agric.,2019

5. Enhanced secure device authentication algorithm in P2P-based smart farm system

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3